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Abstract 

This paper suggests an asynchronous Markov regime switching generalized orthogonal GARCH (ARSGO) 

model to study the relations among stock return, stock volatility, and trading volume. The contribution of this paper 

is twofold: first the proposed ARSGO is a GO GARCH such that different financial variables are governed by 

different state variables with the dependence of switching captured by a synchronization factor. Second, with the 

proposed ARSGO, the one-step estimation of stock returns, return volatility and trading volume under regime 

switching is feasible. In this paper, ARSGO is applied to investigate simultaneously the contemporaneous and causal 

relations between stock returns, return volatility and trading volume for Hang Seng and S&P 500 index.  

Empirical results show that for both Hang Seng and S&P 500 index, unconditional mean returns are lower 

in the higher volatility state and mean percentage changes in trading volume are higher in the high volatility state. 

The one-period lagged index returns and percentage change in trading volume exhibit positive impacts on their 

current values in the high volatility state. Higher percentage change in volume last period causes higher current 

return for Hang Seng index but lower current return for S&P 500 index only in the high volatility state. The one-

period lagged index return has a significant negative impact and a significant positive impact on current trading 

volume in the high and low volatility states, respectively for both indices. The volatility persistence tends to be more 

pronounced in higher return or trading volume volatility regime. It is also found that no significant impact of lagged 

percentage changes in trading volume on current return volatility. The average correlations between return and 

percentage changes in trading volume for Hang Seng index are all higher than that of S&P 500 index in each regime 

combinations and the extent of desynchronization between stock return and trading volume is higher in S&P 500 

than in Hang Seng.  
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I. Introduction  

 

A considerable body of literature has developed that empirically explores the contemporaneous relation 

between stock returns and trading volume (Epps, 1975; Richardson et al, 1986; Harris, 1987; Karpoff, 1987; Jain and 

Joh, 1988). Existing finance literature seems to suggest a positive return-volume relation but inconsistent conclusions 

still remain. As mentioned by Chuang et al. (2009), the dynamic (causal) relation between return and volume is more 

informative as far as prediction and risk management are concerned. Since the 1990s, the focus has moved to 

investigate dynamic relation and most of these studies investigate the causal relation with bivariate vector 

autoregressive (VAR) models and Granger causality tests (Hiemstra and Jones, 1994; Saatcioglu and Starks, 1998; 

Chordia and Swaminathan, 2000; Lee and Rui, 2002; Statman et al., 2006; Eleanor Xu et al., 2006; Griffin et al., 

2007; Hutson et al., 2008; Chuang et al. 2009; Chen, 2012). The causality between stock return and trading volume, 

however, remains controversial. This is not surprising because the relation between past returns and trading activity 

depends on a number of factors that change through time and differ across countries (Griffin et al., 2007).   

For instance, some articles suggest a unidirectional causality between trading volume and stock returns. 

Statman et al. (2006) investigating the monthly data in NYSE/AMEX shares from 1962 through 2001 and show that 

market-wide trading activity is positively correlated to past shocks in market return. Based on the sample of 46 

developed and developing countries, Griffin et al. (2007) also document a strong positive relation between turnover 

and past returns especially in countries with high levels of corruption, with short-sale restrictions, and in which 

market volatility is high. In contrast, however, Saatcioglu and Starks (1998) examine the stock price-volume relation 

in a set of Latin American markets and fail to find strong evidence on stock price changes leading volume. Instead, 

they find that volume seems to lead stock price changes. Lee and Rui (2002) investigate the dynamic relations 

between stock market trading volume and returns of the three largest stock markets: New York, Tokyo, and London 

and find that trading volume does not Granger-cause stock market returns on each of three stock markets. Still others 

document a bidirectional returns-volume causality. Hiemstra and Jones (1994) apply both linear and nonlinear 

Granger causality tests to examine the dynamic relation between daily Dow Jones stock returns and percentage 

changes in New York Stock Exchange trading volume and find evidence of significant bidirectional nonlinear 

causality between returns and volume. Chuang et al., (2012) investigate the returns-volume relation for ten Asian 
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stock markets and find that there is a positive bi-directional causality between stock returns and trading volume in 

Taiwan and China. 

 More sophisticate models have been applied to investigate the causal relation between stock returns and 

trading volume recently. McMillan (2007) apply a logistic smooth-transition model (LSTR) to investigate the 

dynamic of UK, US, France and Japan equity returns and conclude that using lagged volume as a threshold improves 

the performance of return forecasts. Chuang et al. (2009) investigate the causal relations between stock return and 

volume for three major indices, NYSE, S&P 500 and FTSE 100, based on quantile regressions and find that the 

causal effects of volume on return are usually heterogeneous across quantiles and those of return on volume are more 

stable. Chen (2012) investigates the relation of S&P 500 price index and trading volume with a two-state Markov 

regime switching vector autoregressive (MS-VAR) model and conclude that the stock return is capable of predicting 

trading volume but the evidence for trade volume predicting returns is weaker. 

 Another strand in this line of research focuses more on the volume-volatility relation. Ample evidence has 

been reported supporting a significant linkage between volume and volatility. Lee and Rui (2002) apply a VAR 

model to three major stock markets and find evidence of a positive feedback relationship between trading volume 

and return volatility. Eleanor Xu et al. (2006) employ a time-consistent vector autoregressive model to test the 

dynamic relationship between return volatility and trades using intraday data and report that volatility and volume 

are persistent and highly correlated with past volatility and volume. Hutson et al. (2008) investigate the relation 

between the first three moments of market returns and trading volumes in eleven international stock markets and find 

strong evidence of the volume-volatility relation. Chuang et al. (2012) study the major Asian stock markets and 

report that there is a positive bi-directional causality between trading volume and return volatility in Japan, Korea, 

Singapore, and Taiwan. 

In spite of a large body of research on the relation among stock returns, trading volume and return volatility, 

surprisingly they are seldom estimated as a joint system.  As mentioned by Chuang et al. (2012), stock returns, 

trading volume, and return volatility are jointly and simultaneously determined by the same market dynamics and a 

partial estimation of the system could lead to inefficient and potentially biased results. Chuang et al. apply a bivariate 

VAR-GARCH model to simultaneously study these relations. In light of Chen’s (2012) recent work which 

investigates the return-volume relationship under state-dependent market condition, together with Chuang et al.’s 

(2012) work, this paper suggests a multivariate regime switching GARCH model to study simultaneously the 
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empirical relation between stock return and trading volume and between stock volatility and trading volume under 

regime switching as a joint system. 

 The contribution of this paper is twofold: first I propose an asynchronous Markov regime switching 

generalized orthogonal GARCH (ARSGO) model which incorporates the framework of asynchronous switching 

properties (Bengoechea et al., 2006; Camacho and Perez-Quiros, 2006) with generalized orthogonal GARCH (GO) 

model (van der Weide, 2002). ARSGO is an extension of the regime switching generalized orthogonal GARCH 

model proposed by Lee (2009) such that different data series are governed by different state variables and the 

dependence of switching is captured by a synchronization factor.
1
  Second, Chen’s (2012) MS-VAR does not capture 

the full regime switching covariance structure of trading volume and stock returns and the dynamic relation between 

trading volume and stock volatility is not investigated. Chang et al.’s (2012) VAR-GARCH investigates the dynamic 

relation between trading volume and stock volatility but does not consider the state of market conditions. With the 

proposed ARSGO, the simultaneous estimation of stock returns, trading volume and return volatility under regime 

switching will be feasible. This paper attempt to investigate simultaneously the contemporaneous and causal 

relations between stock returns and trading volume and the causal relation between return volatility and trading 

volume under regime switching. 

 

The remainder of the article is organized as follows. The asynchronous Markov regime switching 

generalized orthogonal GARCH (ARSGO) is presented in section II. Section III gives the description of recombining 

procedure and regime switching filtering algorithm. This is followed by discussions of data and empirical results. A 

conclusion ends the article. 

 

II. Asynchronous Markov regime switching generalized orthogonal GARCH (ARSGO) 

 

The proposed asynchronous Markov regime switching generalized orthogonal GARCH (ARSGO) model 

which incorporates the framework of asynchronous switching properties with GO GARCH such that different data 

series are governed by different state variables and the dependence of switching is captured by a synchronization 

                                                 
1
  Lee (2009) proposes a regime switching generalized orthogonal GARCH model for optimal futures hedging 

which restricts all data series to be governed by a common switching dynamic. ARSGO releases this assumption and 

the dependence of switching is further captured by a synchronization factor.  
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factor.
2
 The ARSGO specification with application for modelling stock return and trading volume dynamics is 

depicted below:  

Let   ttt VRΥ  be a 12  vector of stock return and trading volume with conditional mean equations 

given by 

tRtRtRtR sRtsRVtsRsRt eVRR
,,,, ,1,1,,    ,     (1) 

tVtVtVtV sVtsVtsVRsVt eVRV
,,,, ,1,1,,    ,     (2) 

where “

”  stands for transpose and 

tRs ,
 and 

tVs ,
are respectively the state variables governing the regime-shifting 

dynamics of stock return and trading volume. 

To complete the dynamic specification of the process, a new state variable tS  is defined and is given by  
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The four-state matrix of transition probability is defined as  
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



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
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





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PPPP

PPPP

PPPP

PPPP

SP ,      (4) 

whose columns sum to unity and  ijPP ttijS  1, |SS  stands for transition probability of being in state i  at 

time 1t  and in state j  at time t . With the definition above, the matrix form of the mean equation is given by  

ttt ttt SSS eΥφμΥ ,1   ,        (5) 

                                                 
2
  ARSGO is different from Otranto’s (2005) multi-chain Markov switching (MCMS) model and Sheu and 

Lee’s  (2014) multi-chain Markov regime switching GARCH (MCSG) model in two aspects: Firstly, MCMS and 

MCSG capture the switching dependence with lagged transition variables entering into the transition probability. 

ARSGO, however, captures the dependence of switching with a synchronization factor which measures explicitly the 

weight of synchronous regimes. Secondly, ARSGO embedded van der Weide’s GO GARCH (2002) with an 

asynchronous switching framework and capture the state-dependent time-varying correlation dynamic with a state-

dependent mapping matrix. MCMS and MCSG, however, estimate models with a constant correlation within each 

regime.   
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where   
tVtRt sVsR ,, ,, Sμ  is a 12  vector of state-dependent conditional means of stock return and trading 

volume, 
tSφ  is defined as 

 








tVtV

tRtR

sVsVR

sRVsR

,,

,,

,,

,,




,        (6) 

and    
tttRtRt stssVsRt ee ,S εZe 




,, ,,,  is a state-dependent residual vector. The state-dependent linear 

mapping matrix  
tSZ   is given by 

  















tt

t

SS

SZ



sincos

01
,       (7) 

where 
tS  is a state-dependent rotation angle capture the correlation dynamic of stock return and trading volume and 

is governed by both state variables 
tRs ,
 and 

tVs ,
.  

The state-dependent residual vector 
tt Sε ,  assumed to be normally distributed 

 
tt ttt BN SS H0ε ,1, ,~|  ,        (8) 

where BN  stands for bivariate normal, 1t  is information set available at time 1t  and the time-varying state-

dependent covariance matrix 
tt SH ,  is specified as  

 ),(
,, ,,,,, tVtRt stVstRt hhdiagSH ,       (9) 

where each component is described by a switching GARCH model given by  

The volatility dynamics of stock return and trading volume are assumed to follow a regime switching GARCH 

process given by  

1,1,,

2

1,,,,, ,,,,,   tsRtRsRtRsRsRstR Vheh
tRtRtRtRtR

 ,    (10) 

tVtVtVtVtV stVsVtVsVsVstV heh
,,,,, ,1,,

2

1,,,,,    .     (11) 

In the volatility dynamic, the lagged term of volume enters the return volatility dynamic to capture the impact 

of past volume on current return volatility (Chuang et al., 2012).   
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With the above definition, the vector tY  is normally distributed with conditional mean 
tSμ  and conditional 

covariance matrix 
tt SΩ ,  

 
tt ttt N SS ΩμY ,1 ,~|  ,       (12) 

where  

   
tttt tt SSSS ZHZΩ  ,, .       (13) 

The state-dependent correlation coefficient 
tt S,  can be shown as 

 
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tVttRttR
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,

sincos
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S

S
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




 .   (14) 

The contemporaneous correlation between stock return and trading volume 
tt S,  depends on both the state 

variables 
tRs ,
 and 

tVs ,
. As a consequence, there are four possible time-varying correlation dynamics under 

high/high, high/low, low/high and low/low return volatility and volume volatility regimes. With ARSGO, we can 

investigate the contemporaneous correlations between stock return and trading volume under different regime 

combinations.  

 

 

 

 

III. Recombining procedure and regime switching filtering algorithm  

 

To solve the well-known path-dependency problem (Cai, 1994; Hamilton and Susmel, 1994; Gray, 1996) due 

to the recursive nature and regime switching property, Gray’s recombining method (Gray, 1996) is applied for 

residuals and volatilities: 

    2,,1,,1, ,,
1|  

tRtR sRtRsRtRtttttR ppRRERe  ,   (15)
 

    2,,1,,1, ,,
1|  

tVtV sVtVsVtVtttttV ppVVEVe  ,   (16)
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where 
isR tR ,,  and 

isV tV ,,  ,  2,1i  are respectively the state-dependent conditional means of stock return and 

trading volume and  1,, |1  ttRtR sPp   and  1,, |1  ttVtV sPp   are regime probabilities of being in 

state 1 at time t  for state variables 
tRs ,
 and 

tVs ,
, respectively. The recombining process for the variance of stock 

return is given by 

          2,,

2

2,1,1,,

2

1,1,, ,,,,
|11|1  

tRtRtRtR stRsRttRstRsRttRtRt hsPhsPhRVar 
 

      2

2,1,1,1, ,,
|11|1  

tRtR sRttRsRttR sPsP   ,    (17) 

Analog to Lee (2009), the recombining process for the trading volume is given by 

        1
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      2

2,1,1,1, ,,
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tVtV sVttVsVttV sPsP      (18) 

Since the variance of trading volume is equal to     tVtR hh ,

2

,

2 sincos   , it follows that  
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where the rotation coefficients   is equal to the weighted average of 1 , 
2 , 3  and 

4  , weighted by the 

conditional state probability  1|  tt iP S .  

The state-dependent volatilities 
tRstRh

,,,  and 
tVstVh

,,,  are driven by different state variables 
tRs ,
 and 

tVs ,
, 

respectively and the state-dependent dynamic conditional correlation is governed by both state variables 
tRs ,
 and 

tVs , .  In Lee’s regime switching model GO GARCH (2009), all data series are governed by a single state variable, 

namely, tVtR ss ,,   in our application.
 
Although the switching dynamic between stock return and trading volume 

might be positive correlated, the correlation should not be perfect. Following Bengoechea et al. (2006) and Camacho 

and Perez-Quiros (2006), in the proposed ARSGO, the comovement between stock return and trading volume is 

assumed to be VR  times the case of independent and  VR1  times the case of perfect dependent, where 
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10  VR . The weight VR  as a consequence measures the extent of desynchronization between stock return and 

trading volume.  

To incorporate the asynchronous factor VR  into ARSGO, the following filtering algorithm is applied. If we 

collect all state probabilities in the vectors and define 
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where    is a vector of system parameters to be estimated. The updated probability vector is given by 

111
ˆˆ

  tttt |S| ξPξ ,         (21) 

where SP  is the transition matrix. Because it has VR  times for the case of independent and  VR1  times for the 

case of perfect dependent, SP  is calculated as  

  D

VR

I

VR PPPS   1 ,       (22) 

Where 
I

P  and 
D

P  are the transition matrices in cases of independent and perfect synchronous, respectively. 

Substituting equation (22) into equation (21), we have  

   111
ˆ1ˆ

  tt

D

VR

I

VRtt || ξPPξ 
 

  D

ttVR

I

ttVR 11
ˆ1ˆ

  || ξξ  ,      (23) 

where 111
ˆˆ

  tt

II

tt || ξPξ  and 111
ˆˆ

  tt

DD

tt || ξPξ  are the predicted probability vector for the cases of independent 

and perfect synchronous, respectively.  

In the case when the switching dynamics of stock return and trading volume are mutually independent, 

elements in the transition matrix SP  are calibrated as a product of those for the independent chains governing tRs ,  

and tVs , . For example, 

     1|12|13|1 1,,1,,1   tVtVtRtRtt ssPssPP SS .   (24) 
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The forecasted probability vector in the case of mutually independent denoted as 
I

tt 1| ξ  is then given by:  
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As in the case when both stock return and trading volume share a common pattern of regime switches, state 2 

and 3 for tS  are excluded. In this case, the transition matrix is reduced to a  22  matrix and the forecasted 

probability vector in the case of perfect synchronization denoted as 
D

tt 1| ξ  is given by:  
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where tVtRt sss ,,  .  To estimate the transition probability matrix, the following logistic functions are applied to 

calculate the transition probabilities for stock return and trading volume.  
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where 0,Rp , 0,Rq , 0,Vp , 0,Vq  are estimated along with system parameters. The filtered probabilities are updated 

according to the following formula: 

 ttt

ttt

tt

ηξ1

ηξ
ξ

|

|

|





1

1

ˆ

ˆ
ˆ






 ,        (29) 

where 1  is a 12
 
vector of ones,   denotes elements-by-elements and tη  is a vector of conditional density given 

by  
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The density of stock return and trading volume conditional on past observations and being in regime tS
 
at 

time t is denoted as  

 
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The mixture likelihood is the weighted average of conditional densities given by 

     


 
4

1

111 ;|;,|;|
i

ttttttt jPjff  SSΥΥ .   (32) 

The unknown parameters in ARSGO are  VRΘ ,  0,Rp , 0,Rq , 0,Vp , 0,Vq , 
tRsR ,, , 

tRsR ,, , 
tRsRV ,, , 

tVsV ,, , 
tVsVR ,, , 

tVsV ,, , 
tRsR ,, , 

tVs ,
 , 

tRsR ,, , 
tRsR ,, ,  

tRsR ,, , 
tVsV ,, , 

tVsV ,, , 
tVsV ,, , 

tS  for  2,1, tRs , 

 2,1, tVs  and  4,3,2,1tS , which can be estimated by maximizing the following log-likelihood function   

   


 
T

t

ttfLL
1

1;|log Υ ,       (33) 

where   ;| 1ttf Υ  is defined in equation (32).  

 

IV. Data description and empirical results 

 

The proposed ARSGO is applied to weekly returns on Hang Seng index and trading volume from 1988/6/1 to 

2014/12/31 and weekly returns on S&P price index and trading volume from 1986/1/8 to 2014/12/31. The data on 

the stock price index ( tp ) and trading volume ( tv ) are collected from the Datastream database. The stock returns 

and the percentage changes in volume are calculated as   100/log 1  ttt ppR
 
and   100/log 1  ttt vvV , 
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respectively. Table 1 reports the summary statistics on stock returns and trading volume including sample mean, 

maximum value, minimum value, standard deviation, skewness, kurtosis and Jarque-Bera test for normality.  Hang 

Seng index has a mean return of 0.161 which is higher than that of S&P 500 index. The mean percentage change of 

Hang Seng trading volume is also higher than that of S&P 500 trading volume. Higher percentage change in trading 

volume reflects higher volatility in trading volume that might signal a higher risk and require a higher compensated 

return. According to the Skewness, leptokurtosis, and significant Jarque-Bera statistics, the unconditional 

distributions of for index return and percentage change of volume are non-Gaussian. This justifies modeling the 

index return and percentage change of volume with nonlinear regime switching model.  

 Table II shows the ARSGO estimates of unknown parameters for Hang Seng returns and trading volumes 

and S&P 500 returns and trading volumes. In the mean equation, for the case of Hang Seng index, state 1 is the 

higher volatility state for both return and volume. The unconditional mean return on Hang Seng index is equal to -

0.070 and 0.453 in the low and high volatility state, respectively. Higher volatility is normally associated with a 

market downturn and generates lower return. For the case of S&P 500 index, state 1 is the lower volatility state for 

return and the higher volatility state for volume. Again, the unconditional mean return is lower and equal to -0.121 in 

the high volatility state. Hang Seng index has unconditional mean percentage changes in volume of 0.046 and -0.089 

in the high and low volatility regimes respectively and S&P 500  index has unconditional mean percentage changes 

in volume of 1.193 and 0.912 in the high and low volatility regimes respectively. The mean percentage changes in 

volume are higher in the high volatility state for both indices. This reflects the fact that higher mean percentage 

changes in volume causes higher trading volume volatility.  

 The coefficients s'  reflects the one-period own lagged or cross lagged effects. For Hang Seng index, 

tRsR ,,  is respectively equal to 0.160 and -0.085 in the high and low volatility states. It appears that in the high 

volatility state, the higher the return in previous period, the higher the current period return will be. Overall, Hang 

Seng index return shows higher persistence in the high volatility state. Similar results also found in S&P 500 index. 

It also has a significant higher 
tRsR ,,  of 0.185 in the high volatility state (state 2) and shows higher return 

persistence in the high volatility state. 
tVsV ,,  shows the effect of lagged percentage change in trading volume on its 

current value. For Hang Seng index, 
tVsV ,,  is equal to 0.314 in the high volatility state and -0.559 in the low 
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volatility state. The higher percentage change in trading volume last period results in a higher percentage change in 

trading volume this period in the high volatility state but results in a lower percentage change in trading volume this 

period in the lower volatility state. S&P 500 index also exhibits similar property. In general, percentage change in 

trading volume has higher return persistence in the high volatility state for both indices.  The impact of one-period 

lagged percentage change in volume on current return is reflected in the sign and magnitude of 
tRsRV ,, . In the high 

volatility state, higher positive percentage change in volume last period causes higher return for Hang Seng index 

and lower return for S&P 500 index. The relationship between lagged trading volume and current return, however, is 

insignificant for both indices in the low volatility state. 
tVsVR ,,  shows the impact of one-period lagged return on 

current trading volume. The lagged index return has a significant negative impact on current trading volume for both 

indices in the high volatility state signals that investors are more hesitate in actively trading when stock rally during 

market turmoil. The index return, however, has a significant positive impact on current trading volume for both 

indices in the low volatility state. This shows that investors are more actively in trading when return increases in the 

relatively lower market volatility state.   

 All s'  in the high volatility state is higher than that in the low volatility state in the variance equation 

shown in Table II. The   estimates from ARSGO for Hang Seng and S&P 500 return in the high volatility state are 

0.834 and 0.524, respectively.  The estimates in the low volatility state for returns, however, are close to zero for 

both indices. The   estimates from ARSGO for Hang Seng and S&P 500 percentage changes in trading volume are 

respectively equal to 0.730 and 0.806 in the high volatility state and are respectively equal to 0.325 and 0.424 in the 

low volatility state. Higher  indicates a higher steady state volatility For a given   and  .  The term    in 

the volatility equation measures the volatility persistence.    in the high and low volatility states are 

respectively equal to 1 and 0.894 for Hang Seng stock return and the    in the high and low volatility states are 

respectively equal to 1 and 0.789 for S&P 500 stock return. Similar results also found for the trading volume. In 

general, the volatility persistence tends to be more pronounced in higher return or trading volume volatility regime. 

tRsR ,,  indicates the state-dependent impact of lagged trading volume on current return volatility. All estimated 

coefficients are close to zero and insignificant indicating that the lagged percentage changes in trading volume does 

not have an impact on current return volatility. The state-dependent volatilities of Hang Seng index return and 
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percentage changes in trading volume are respectively shown in figure 1 and figure 2 and the state-dependent 

volatilities of S&P 500 index return and percentage changes in trading volume are respectively shown in figure 4 and 

figure 5.  

 The contemporaneous correlations dynamic of stock return and trading volume is a function of the state-

dependent rotation angle 
tS  derived in equation (14). Because index return and percentage changes in volume are 

govern by different state variables 
tRs ,
 and 

tVs ,
 following individually a first-order two-state Markov chain, there 

are four possible correlation regimes in each point of time. The state-dependent rotation angle between index return 

and percentage changes in volume for Hang Seng index are equal to 0.728 and 0.194 when both of them are 

simultaneously in the high and low volatility states, respectively. This can be converted into average correlations of 

0.053 and 0.106 when both of them are respectively in the high and low volatility states based on equation (14). The 

state-dependent rotation angle between index return and percentage changes in volume for Hang Seng index are 

equal to 0.258 and 0.049 when return is in the high volatility state and volume is in the low volatility state and vice 

versa, respectively. The corresponding average correlations are 0.188 and 0.627, respectively. Return and volume 

have higher correlation when they are in different volatility regimes. For S&P 500 index return, however, the 

correlation is higher when index return and percentage changes in volume are in the same volatility regimes than in 

different volatility regime. The average correlations are respectively equal to 0.140 and 0.124 when both index return 

and percentage changes in volume are in the high and low volatility regimes and the average correlations are 

respectively equal to 0.088 and -0.01 when index return and percentage changes in volume are respectively in the 

high and low volatility regime and vice versa. Generally speaking, the average correlations in all regime 

combinations between index return and percentage changes in volume for Hang Seng index are higher than that of 

S&P 500 index. The comovement between stock return and trading volume is assumed to be VR  times the case of 

independent. It is shown that the weight VR  is equal to 0.194 and 1 for Hang Seng and S&P 500 indices, 

respectively. The extent of desynchronization between stock return and trading volume is much higher in S&P 500 

index than in Hang Seng index. This is consistent with the results that correlation between return and volume for 

Hang Seng index are higher than that of S&P 500 index in all regime combinations. The state-dependent correlations 

of Hang Seng index and S&P 500 index are shown in figure 3 and figure 6, respectively.  
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V. CONCLUSIONS 

 

The focus of this article has been investigating simultaneously the contemporaneous and causal relations 

between stock returns and trading volume and the causal relation between return volatility and trading volume under 

multiple-state-variable regime switching. An asynchronous Markov regime switching generalized orthogonal 

GARCH (ARSGO) model is proposed to make feasible of one-step estimation of stock returns, return volatility and 

trading volume under regime switching. ARSGO is an extension of GO GARCH model such that different financial 

variables are governed by different state variables with the dependence of switching captured by a synchronization 

factor.  

The suggested ARSGO is applied to Hang Seng and S&P 500 index returns and percentage changes in 

trading volumes. Empirical results show that unconditional mean returns on both Hang Seng and S&P 500 indices 

are lower in the higher volatility state. Higher volatility is normally associated with a market downturn and creates 

lower return. The mean percentage changes in volume, however, are higher in the high volatility state for both 

indices. This reflects the fact that higher mean percentage changes in volume might cause higher trading volume 

volatility. Results also show that the higher the return in previous period, the higher the current return will be in the 

high volatility state for both Hang Seng and S&P 500 indices.  Overall, the index returns exhibit higher return 

persistence in the high volatility state. The higher percentage change in trading volume last period results in a higher 

percentage change in trading volume this period in the high volatility state but results in a lower percentage change 

in trading volume this period in the lower volatility state for both Hang Seng and S&P 500 indices. In general, 

percentage change in trading volume has higher mean persistence in the high volatility state for both indices. In the 

high volatility state, higher one-period lagged percentage change in volume causes higher current return for Hang 

Seng index but lower current return for S&P 500 index. The relationship between lagged trading volume and current 

return, however, is insignificant in the low volatility state for both indices. The lagged index return has a significant 

negative impact and a significant positive impact on current trading volume in the high and low volatility state 

respectively for both indices.   

Base on the estimation results of volatility equation, all s'  in the high volatility state is higher than that in 

the low volatility state. The volatility persistence tends to be higher in the higher return or trading volume volatility 
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regimes. It is also found that no significant impact of lagged percentage changes in trading volume on current return 

volatility. As for the contemporaneous correlations, stock return and percentage changes in volume have higher 

correlation when they are in different volatility regimes for Hang Seng index but have higher correlation when both 

of them are in the same volatility regimes for S&P 500 index. Generally speaking, the average correlations in all 

regime combinations between index return and percentage changes in volume for Hang Seng index are higher than 

that of S&P 500 index and as a consequence the extent of desynchronization between stock return and trading 

volume is much higher in S&P 500 index than in Hang Seng index.  

 

Table I 

Summary Statistics for Hang Seng and S&P 500 Stock Return and Volume 

 

Hang Seng  S&P 500  

 

Index Volume  Index Volume  

Mean  13332.820  3425262  7780.494  487393  

Maximum 31352.580  36482530  15657.630  1976051  

Minimum 2224.660  44620  2758.800  14959  

Std. Dev. 6667.924  4185569  3809.946  391470  

Skewness  0.129  1.639  0.326  0.659  

Kurtosis 2.065  6.759  1.709  2.531  

Jarque-Bera  54.450***  1438.243***  132.087***  123.728***  

 

Return Percentage rate  Return Percentage rate  

Mean  0.161  0.340  0.107  0.239  

Maximum 15.557  189.176  7.833  130.328  

Minimum -20.977  -147.664  -15.263  -154.934  

Std. Dev. 3.404  40.526  2.145  29.500  

Skewness  -0.586  0.328  -0.961  -0.535  

Kurtosis 6.014  4.438  7.933  8.185  

Jarque-Bera  604.117***  144.424***  1769.147***  1769.475***  

*** indicates significance at the 1% level and returns are calculated as the differences in the logarithm of prices multiplied by 100.  
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Table II 

Estimates of Unknown Parameters for Hang Seng and S&P 500 Stock Return and Volume 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

1. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively. 

2. The subscripts 1 and 2 stand for state 1 and 2, respectively. State 1 is the higher volatility state for both return and percentage change in 

volume for Hang Seng index. As for S&P 500 index, state 1 is the lower volatility state and the higher volatility state for return and 
percentage change in volume, respectively. 

3. LL stands for log likelihood.  

 Hang Seng S&P 500  Hang Seng S&P 500 

 Mean Equation  Variance  Equation 

1r
2 

-0.070  0.441  1R  
0.834  0.000  

 (0.086) (0.091)***1  (0.489)* (0.024) 

2r
2 

0.453  -0.121  2R  
0.000  0.524  

 (0.147)***1 (0.115)  0.008) (0.226)** 

1v
 

0.046  1.193  1V  
0.730  0.806  

 (0.062) (0.381)***  (1.438) (1.168) 

2v
 

-0.089  0.912  2V  
0.325  0.424  

 (0.096) (0.936)  (0.848) (0.270) 

1r  0.160  -0.126  1R  0.119  0.278  

 (0.058)*** (0.049)**  (0.048)** (0.053)*** 

2r  -0.085  0.185  2R  0.126  0.066  

 (0.089) (0.061)***  (0.076)* (0.035)* 

1rv  
0.008  0.002  1V  

0.000  0.000  

 (0.004)* (0.003)  (0.045) (0.004) 

2rv  
-0.004  -0.006  2V  

0.207  0.288  

 (0.003) (0.003)**  (0.114)* (0.099)*** 

1vr  
-0.196  -2.093  1R  0.881  0.502  

 (0.076)*** (1.110)*  (0.088)*** (0.090)*** 

2vr  
0.624  0.489  2R  0.768  0.931  

 (0.213)*** (0.209)**  (0.116)*** (0.090)*** 

1v
 

0.314  0.673  1V  
1.000  1.000  

 (0.007)*** (0.034)***  (0.076)*** (0.286)*** 

2v
 

-0.559  -0.450  2V  
0.793  0.551  

 (0.037)*** (0.021)***  (0.091)*** (0.061)*** 

 Correlation Equation 1R  0.000 0.000 

11  0.728  1.644   (0.024) (0.006) 

 (0.173)*** (0.222)*** 2R  0.000 0.003  

12  0.258  0.185   (0.010) (0.005) 
 (0.088)*** (0.044)***    

21  0.049  0.153     

 (0.095) (0.031)***    

22  0.408  0.319     

 (0.089)*** (0.078)***    

VR  
0.194  1.000     

 (0.110)* (0.008)***    

LL
3 -10465.81  -10103.81     
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Figure 1 Regime switching variance of Hang Seng return  
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Figure 2 Regime switching variance of Hang Seng volume 
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Figure 3 Regime switching correlations of Hang Seng return and volume 
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Figure 4 Regime switching variance of S&P 500 return  
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Figure 5 Regime switching variance of S&P 500 volume  
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Figure 6 Regime switching correlations of S&P 500 return and volume 
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Appendix A. Summary of estimation procedure for ARSGO 

 

To complete the likelihood function in (33) for the proposed asynchronous regime switching generalized 

orthogonal GARCH model (ARSGO), the filtering algorithm is summarized below:  

(i) Given the filtered probabilities 11
ˆ

 tt |ξ , projects the state probabilities 

   111
ˆ1ˆ

  tt

D

VR

I

VRtt || ξPPξ 
 
,      (23) 

where 
I

P  and 
D

P  are respectively the transition variable in cases of independent and perfect synchronous.  

(ii) Evaluate the regime dependent likelihood 

 
     
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j

ttt

j

t ttt
μΥZHZμΥ SSS

1

,1|
2

1
exp    (31) 

where the mapping matrix  
tSZ   and volatility elements 

ttt SH ,1|   are defined in equations (7), (9) and 

(10).  

(iii) Evaluate the mixture likelihood 

     


 
4

1

111 ;|;,|;|
i

ttttttt jPjff  SSΥΥ .  (32) 

where the projected probabilities    ;| 1tt jP S  are estimated in step (i).  

(iv) Update the joint probabilities 

 ttt

ttt

tt

ηξ1

ηξ
ξ

|

|

|





1

1

ˆ

ˆ
ˆ






         (29) 

Where 1  is a 12
 
vector of ones,   denotes elements-by-elements and tη  is a vector of conditional 

density defined in equation (30).  

(v) Recombining 
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Apply equations (15)-(19) to recombine residuals, volatilities for next period volatility projection and the 

rotation coefficients   is a weighted average of 
1 , 

2 , 3  and 
4  using projected state probabilities. 

 

(vi) Iterate (i) to (v) until the end of the sample and the likelihood is obtained as a by-product  of this filter given 

by  

    





T

t

tttL
1

1
ˆlog ηξ1 |         (33) 

The vector of steady state probabilities are used as initial regime probabilities to initialize the filtering 

algorithm which is given by  

 

 

 

 



























4

3

2

1

0

0

0

0

S

S

S

S

π

P

P

P

P

,

       

  

which is the solution of the system of equations πPπ   and 1π1  . The solution can be derived as 

 
12 


 nνAAAπ

1
, where 














1

PI
A

n2 , 









 1
2

12

n

n

0
ν

, 

n  is the number of state variables, n2
I  is a 

nn 22   identity matrix and n2
0  is a 12 n

 
zero vector.   
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